

Institute for IIT-JAM | CSIR-NET/JRF | U-SET | GATE | JEST | TIFR | BARC

Dedicated to excellence...

### **MATHEMATICAL PHYSICS**

**Assignment – Complex Analysis** 

# "CSIR-NET/JRF JUNE-2021"

For -

**CSIR-NET/JRF** 

GATE / JEST

TIFR / BARC

All Ph.D. Entrance Exams

"We Believe In Quality Education"

### PART-A (MODULUS & ARGUMENT-CUBE ROOTS OF UNITY)

- Multiplying a complex number z by  $(1 \sqrt{3}i)$  rotates the radius vector of z by an angle of.
  - (a)  $60^{\circ}$  clockwise

(b) 30<sup>0</sup> anticlockwise

(c) 30<sup>0</sup> clockwise

- (d)60° anticlockwise
- 2. If  $|z_1 + z_2| = |z_1 z_2|$ , then the phase difference between  $z_1$  and  $z_2$  is.
- (b)  $45^{\circ}$
- $(c)60^0$
- $(d)90^0$
- The complex number 'z' for which arg  $(z+1) = \frac{\pi}{6}$  and arg  $(z-1) = 2\frac{\pi}{3}$ , is

  - (a)  $\frac{\sqrt{3}}{2} + i\frac{1}{2}$  (b)  $\frac{\sqrt{3}}{2} i\frac{1}{2}$  (c)  $\frac{1}{2} i\frac{\sqrt{3}}{2}$  (d)  $\frac{1}{2} + i\frac{\sqrt{3}}{2}$

- If  $z \neq 0$  is a complex number such that arg  $(z) = \frac{\pi}{4}$ , then
  - (a) Re  $(z^2) = lm (z^2)$
- (b) Re  $(z^2) = 0$

(c) $lm(z^2) = 0$ 

- (d)None of these
- 5. If complex number  $z_1$ ,  $z_2$  and origin form an equilateral triangle, then which of following relation is TRUE?
  - (a)  $z_1^2 + z_2^2 + z_1 z_2 = 0$ (c)  $z_1^2 + z_2^2 = 0$

- (b)  $z_1^2 + z_2^2 z_1 z_2 = 0$ (d)  $z_1^2 + z_2^2 2z_1 z_2 = 0$
- The locus of the point z defined by the equation arg  $(z-4) = \frac{\pi}{4}$ , is
  - (a) Circle

- (b) Parabola (c) Ellipse (d) Straight line
- 7. If 1,  $\omega$ ,  $\omega^2$  are the complex cube roots of unity, then the value of the following expression:
  - (1  $\omega$  +  $\omega^2)$  (1  $\omega^2$  +  $\omega^4)$  (1  $\omega^4$  +  $\omega^8)$  ..... to 2n factors.
  - (a) 2n

- (d)1
- **8.** If 1,  $\omega$ ,  $\omega^2$  are the complex cube roots of unity, then  $(1 \omega + \omega^2)^5 + (1 + \omega \omega^2)^5$ will be.
  - (a) 4
- (b) 8
- (c)16
- (d)32
- **9.** If  $x + iy = (i\sqrt{3} 1)^{100}$ . then the co-ordinate of point P (x,y) will be.
  - (a)  $(2^{90}, 2^{99}\sqrt{3})$

(b)  $(2^{90}, -2^{99}\sqrt{3})$ 

(c) $\left(-2^{99}, 2^{99}\sqrt{3}\right)$ 

(d) None of these

### PART-B (COMPLEX FUNCTION & CAUCHY-REAMANN EQUATIONS)

Examine the continuity of the following functions:

(i) 
$$f(z) = \begin{cases} \frac{Re(z^3)}{|z|^2} & for \ z \neq 0 \\ 0 & for \ z = 0 \end{cases}$$
 at  $z = 0$ 

(ii) 
$$f(z) = \begin{cases} \frac{z^2+1}{z+i} & for \ z \neq -i \\ 0 & for \ z = -i \end{cases}$$
 at  $z = -i$ 

Examine the continuity of the following functions

(i) 
$$f(z) = \begin{cases} \frac{Re(z^3)}{|z|^2} & for z \neq 0 \\ 0 & for z = 0 \end{cases}$$
 at  $z = 0$ 

(ii)  $f(z) = \begin{cases} \frac{z^2+1}{z+i} & for z \neq -i \\ 0 & for z = -i \end{cases}$  the following functions  $z = 0$  at  $z = 0$  at  $z = 0$  for  $z = 0$  at  $z = 0$  for  $z = 0$ .

(iii)  $f(z) = \begin{cases} \frac{x^3y^5(x+iy)}{x^4+y^4} & for z \neq 0 \\ 0 & for z = 0 \end{cases}$  at  $z = 0$  for  $z = 0$ .

[Answer: (i) continuous. (ii) not continuous, (iii) of the following functions  $z = 0$ .

(iv) 
$$f(z) = \begin{cases} \exp\left(-\frac{1}{z^2}\right) & for \ z \neq 0 \\ 0 & for \ z = 0 \end{cases}$$
 at  $z = 0$ 

[Answer: (i) continuous. (ii) not continuous, (iii) continuous, (iv) continuous,

Compute the following limit

(i) 
$$\lim_{Z \to \infty} \frac{iz^3 - iz + 1}{(2z - 3i)(z + i)^2}$$

(ii) 
$$\lim_{Z \to \infty} \frac{z^3}{Re(z^3) - lm(z^3)}$$

(iii) 
$$\lim_{Z \to \infty} \frac{1 - \cos z}{\sin z^2}$$

(iv) 
$$\left[\sqrt{z-2i} - \sqrt{z-i}\right]$$

(i) 
$$\lim_{Z \to \infty} \frac{iz^3 - iz + 1}{(2z - 3i)(z + i)^2}$$
(ii) 
$$\lim_{Z \to \infty} \frac{z^3}{Re(z^3) - lm(z^3)}$$
(iii) 
$$\lim_{Z \to \infty} \frac{1 - \cos z}{\sin z^2}$$
(iv) 
$$\left[\sqrt{z - 2i} - \sqrt{z - i}\right]$$
(v) 
$$\lim_{Z \to \infty} \frac{(Re z - lm z)^2}{|z|^2}$$

(vi) 
$$\lim_{Z \to \infty} \frac{z^4 - 1}{z + i}$$

[Answer: (i)  $\frac{i}{2}$ , (ii) Limit does not exist, (iii)  $\frac{1}{2}$ , (iv)0, (v) Limit does not exist, (vi) 4i]

3. Let  $u(r,\theta) = -r^3 \sin 3\theta$  be the real part of an analytic function f(z) of the complex variable z = r.  $e^{i\theta}$ , the imaginary part of f(z), will be.

(a) 
$$r^3 \cos 3\theta + C$$

(b) 
$$-r^3 \cos 3\theta + C$$

(c) 
$$-ir^3\cos 3\theta + C$$

(d) 
$$ir^3 \cos 3\theta + C$$

**4.** Let  $u(x, y) = x^2 - y^2 - 2x$  be the real part of an analytic function f (z) of the complex variable z = x + iy. The imaginary part of the analytic function, will be.

(a) 
$$2xy - 2y + c$$

(b) 
$$x^2y - 2y + c$$

(c) 
$$x^2y - y^2 + c$$

(d) 
$$2xy - y^2 + c$$

5. Let  $v(r, \theta) = r^2 \cos 2\theta - 2r\cos\theta + 2$  be the imaginary part of an analytic function f(z) of the complex variable z = r.  $e^{i\theta}$ . The real part of f(z), will be

(a) 
$$r^2 \sin 2\theta - 2r \sin \theta + C$$

(b) 
$$r^2 \sin 2\theta + 2r \sin \theta + C$$

(a) 
$$r^2 \sin 2\theta - 2r \sin \theta + C$$
 (b)  $r^2 \sin 2\theta + 2r \sin \theta + C$  (c)  $-r^2 \sin 2\theta + 2r \sin \theta + C$  (d)  $-r^2 \sin 2\theta - 2r \sin \theta + C$ 

(d) 
$$-r^2 \sin 2\theta - 2r \sin \theta + C$$

**6.** Let  $u(x,y) = -x^2 + xy + y^2$  be the real part of an analytic function f(z) of the complex variable z = x + iy. Then f(z) can be expressed as.

(a) 
$$f(z) = \frac{1}{2}(1+i)z^2$$

(b) 
$$f(z) = -\frac{1}{2}(2+i)z^2$$

(a) 
$$f(z) = \frac{1}{2}(1+i)z^2$$
 (b)  $f(z) = -\frac{1}{2}(2+i)z^2$  (c)  $f(z) = \frac{1}{2}(2-i)z^2$  (d)  $f(z) = \frac{1}{2}(1-i)z^2$ 

(d) 
$$f(z) = \frac{1}{2}(1-i)z^2$$

- 7. If  $f(z) = \frac{1}{2}\ln(x^2 + y^2) + i \tan^{-1}\left(\frac{ax}{y}\right)$  be an analytic function, then a is equal to. (b) 1 (c) -2 (d) 2
  - (a) -1

- 8. Given:  $f(z) = x^2 + Py^2 2xy + i(Qx^2 y^2 + 2xy)$  is analytic in nature. The value of P and Q will be.

(a) 
$$P = 1$$
,  $Q = 1$ 

(b) 
$$P = -1$$
,  $Q = 1$ 

(c) 
$$P = 1$$
,  $Q = -1$ 

(d) 
$$P = -1$$
,  $Q = -1$ 

### PART-C (MILNE THOMSON METHOD & ANALYTIC FUNCTION)

1. Find the complex analytic function f(z) for which either the real part or the imaginary part is given as following:

(i) 
$$v = e^x (x \cos y - y \sin y)$$

(ii) 
$$u - v = (x - y)(x^2 + 4xy + y^2)$$

(iii) 
$$v = tan^{-1} \left(\frac{y}{x}\right)$$

(iv) 
$$2u + v = e^{2x}[(2x + y)\cos 2y + (x - 2y)\sin 2y]$$

$$(v) u(x,y) = 2x + y^3 - 3x^2y$$

### Ans.

$$\overline{(i)} \, iz e^z + C$$
,

$$(ii) - iz^3 + C,$$

(iii) 
$$\ln z + C$$
,

(ii) 
$$-iz^3 + C$$
,  
(iv)  $ze^{2z} + C$ , (v)  $2z+iz^3 + C$ ]

- The real part of the complex analytic function f(z) is given by u(x, y) = Ax + By. If can be written as f(z) = Mz + C (where C is constant), then the value of M is.
  - (a) A+ iB
- (b) A –iB
- (c) A+B
- (d) A B
- Which of the following function is NOT analytic in the entire complex argand **3.** plane?
  - $(a) f(z) = |z|^2$

- (b)  $f(z) = \overline{z}$
- (c) f(z) = z(Re z)
- (d)  $f(z) = \cos z$
- Which of the following function is analytic at the origin in the complex argand plane?
  - (a)  $f(z) = i|z|^2$

(b) f(z) = z(lm z)

(c)  $f(z) = z^3$ 

(d)  $f(z) = \frac{z+2i}{1+iz}$ 

- 5. Which of the following **CANNOT** be a real part of a complex analytic function f(z) of the complex variable z = x + iy?
  - (a)  $\frac{1}{2} \ln(x^2 + y^2)$

- (b) sin x cosh y
- (c)  $e^{-2xy} \sin(x^2 y^2)$
- (d)  $x^2 + y^2$
- **6.** If the function  $v(x, y) = e^{ax} \sin h(by)$  corresponding to the imaginary part of the complex analytic function f(z) = u(x, y) + iv(x, y), then which of the following relation is **CORRECT?** 
  - (a) b = +a

(b)  $b = \pm ia$ 

(c)  $b = \pm i2\pi a$ 

- (d)  $b^2 = \pm a^2$
- 7. Which of the following is/are NOT a complex analytic function of complex variable z = x + iv?
  - (a)  $f(z) = (x^2 y^2 + 2ixy)^7 (x + iy)^{17}$
  - (b)  $f(z) = (x^2 y^2 + 2ixy)^{12}(x iy)^4$
  - (c)  $f(z) = (x + iy 5)^{13}$
  - (d)  $f(z) = (2x + iy 5)^{19}$

#### PART-D (POWER & TAYLOR SERIES EXPANSION)

- 1. Find the radius and region of convergence of the power series expansion of the following functions:
  - (i)  $f(z) = \frac{1}{(z-3)(z+2)}$  about z = 1 (ii)  $f(z) = \frac{1}{(z-3)(z-4)}$  about z = 1 (iii)  $f(z) = \frac{1}{z^2 + (1+2i)z + 2i}$  about z = 0 (iv)  $f(z) = \ln(2 + 2i)$
- (iv)  $f(z) = \ln(2 + iz)$  about z = 1
- (v)  $f(z) = \sinh z$  about  $z = \frac{\pi i}{2}$  (vi)  $f(z) = \sin(2z + z^2)$  about z = -1
- (vii) f(z) = cosech(z) about  $z = i \frac{\pi}{2}$
- (viii)  $f(z) = \ln\left(\frac{1+z}{1-z}\right)$  about z = 0
- [ANSWER: (i) R = 2, |z 1| < 2, (ii) R = 1, |z 2| < 1 (iii) R = 1, |z| < 1,
- (iv) R = 1, |z i| < 1, (v) R =  $\infty$ ,  $|z \frac{\pi i}{2}| < \infty$ , (vi) R =  $\infty$ ,  $|z + 1| < \infty$ ,
- (vii)  $R = \frac{\pi}{4}, |z i\frac{\pi}{4}| < \frac{\pi}{4},$  (viii) R = 1, |z| < 1]
- The taylor series expansion of  $f(z) = \cos z$  about  $z = \frac{\pi}{3}$  will be.
  - (a)  $f(z) = \frac{1}{2} + \frac{\sqrt{3}}{2} \left( z \frac{\pi}{3} \right) + \frac{1}{4} \left( z \frac{\pi}{3} \right)^2 + \dots$
  - (b)  $f(z) = \frac{1}{2} \frac{\sqrt{3}}{2} \left( z \frac{\pi}{3} \right) \frac{1}{4} \left( z \frac{\pi}{3} \right)^2 + \dots$
  - (c)  $f(z) = \frac{\sqrt{3}}{2} \frac{1}{2} \left( z \frac{\pi}{3} \right) \frac{\sqrt{3}}{4} \left( z \frac{\pi}{3} \right)^2 + \dots$

(d) 
$$f(z) = \frac{\sqrt{3}}{2} + \frac{1}{2} \left( z - \frac{\pi}{3} \right) + \frac{\sqrt{3}}{4} \left( z - \frac{\pi}{3} \right)^2 + \dots$$

- Suppose a complex function f(z) such that f(1) = 1, f'(1) = 1, f''(1) = 1 and all other higher derivatives of f(z) at z = 1, are zero. The value of f(z) = 1/3 will be.
  - (a) 1/3
- (b) 4/9
- (c) 5/9
- (d) 7/9
- Expand of following function into Laurrent series for the regions:
  - (i) 0 < |z| < 1
- (ii) 1 < |z| < 2 (iii)  $2 < |z| < \infty$

$$f(z) = \frac{1}{z(z-1)(z-2)}$$

[Answer: (i)  $\frac{1}{2z} + \sum_{n \ge 0} \left(1 - \frac{1}{2^{n+2}}\right) z^n$ ,

(ii)  $-\frac{1}{2z} - \sum_{n \ge 2} \frac{1}{z^n} - \sum_{n \ge 0} \frac{z^n}{2^{n+2}}$ 

- $(iii) \frac{1}{3} + \frac{3}{3} + \dots$
- The coefficient of  $(x 1)^3$  of Taylor series expansion  $f(x) = (x 1)e^x$  about x = 1, will be
  - (a) e/6
- (b) e/2
- (c) -e/2
- (d) e/6
- Using the taylor series expansion of the function  $f(x) = \sin \pi x$  about  $x = \frac{1}{2}$ , one can approximate  $\sin \pi \left(\frac{1}{2} + \frac{1}{10}\right)$  as (upto 4 decimal places)
  - (a) 0.9317
- **(b)** 0.9434
- (c) 0.9511 (d) 0.9632
- The Taylor series expansion of the function  $f(x) = \cos x$ . In (1-x) about x = 0, will be.
- (a)  $-x \frac{x^2}{2} + \frac{x^3}{6} + \dots$  (b)  $x \frac{x^2}{2} + \frac{x^3}{6} + \dots$  (c)  $x \frac{x^2}{2} + \frac{x^3}{6} \dots$  (d)  $-x \frac{x^2}{2} \frac{x^3}{6} \dots$
- The coefficient of  $(x-1)^4$  of Taylor series expansion of  $f(x) = \frac{1}{x^2}$  about x = 1, will be
  - (a) -5
- (b) 5
- (c) -4
- (d)4
- The Taylor series expansion of the function  $f(z) = z^3 10z^2 + 6$  about z = 3 will 9. be.
  - (a)  $57 33(z 3) + (z 3)^2 (z 3)^3$
  - (b) 57 -33(z 3) +  $(z 3)^2 (z 3)^3$
  - (c)  $-57 33(z 3) (z 3)^2 + (z 3)^3$
  - (d) 57 33(z 3)  $(z 3)^2 (z 3)^3$
- 10. Taylor series expansion of the function  $f(z) = z^4 e^{-3z^2}$ , about z = 0 will be.

  (a)  $\sum_{n=0}^{\infty} \frac{(-3)^n z^{2n+4}}{n!}$ (b)  $\sum_{n=1}^{\infty} \frac{(-3)^n z^{2n+4}}{n!}$

## **Career Spectra**



(c) 
$$\sum_{n=1}^{\infty} \frac{(-3)^n z^{2n+4}}{(2n)!}$$

(d) 
$$\sum_{n=0}^{\infty} \frac{(-3)^n z^{2n+4}}{(2n)!}$$

11. For which of the following functions, the Laurent series about the origin has largest region of convergence?

$$(a) \frac{1}{z^2 - 2z}$$

(b) 
$$\frac{e^{z-1}}{z}$$

(a) 
$$\frac{1}{z^2 - 2z}$$
 (b)  $\frac{e^{z-1}}{z}$  (c)  $\frac{1}{(z+1)(z-2)}$  (d)  $\frac{1}{z(z-1)}$ 

**12.** Expand the following complex functions in Laurent series:

(i) 
$$f(z) = \frac{1}{z(z+2)^3}$$
 about  $z = -2$ 

(ii) 
$$f(z) = \frac{e^{2z}}{(z-1)^3}$$
 about  $z = 1$ 

(iii) 
$$f(z) = \frac{1}{(z+1)(z+2)}$$
 about  $z = -2$ 

(iv) 
$$f(z) = \frac{z - \sin z}{z^3}$$
 about  $z = 0$ 

(v) 
$$f(z) = \cos\left(\frac{z}{1-z}\right)$$
 about  $z = 1$ 

(vi) 
$$f(z) = \exp\left(\frac{z}{z-2}\right)$$
 about  $z = 2$ 

(vii) 
$$f(z) = (z+3) \sin\left(\frac{1}{z-2}\right)$$
 about  $z=2$ 

(viii) 
$$f(z) = \frac{1}{z^2} \sinh\left(\frac{1}{z}\right)$$
 about  $z = 0$ 

(ix) 
$$f(z) = \frac{1}{z^2 + (3i-1)z - 3i}$$
 about  $z = 1$ 

(x) 
$$f(z) = \sin\left[\frac{z^2 - 6z}{(z-3)^2}\right]$$
 about  $z = 3$ 

[ANSWER: (i) 
$$-\frac{1}{2(z+2)^3} - \frac{1}{4(z+2)^2} - \frac{1}{8(z+2)} - \frac{1}{16} - \frac{1}{32}(z+2) - \dots$$

(ii) 
$$\frac{e^2}{2(z-1)^3} + \frac{2e^2}{(z-1)^2} + \frac{2e^2}{(z-1)} + \frac{4e^2}{3} + \frac{2e^2}{3}(z-1) - \dots$$

(iii) 
$$\frac{z}{z+2} + 1 + (z+2) + (z+2)^2 + \dots$$

(iv) 
$$\frac{1}{3i} - \frac{z^2}{5!} + \frac{z^4}{7!}$$

(iii) 
$$\frac{2}{z+2} + 1 + (z+2) + (z+2)^2 + \dots$$
 (iv)  $\frac{1}{3i} - \frac{z^2}{5!} + \frac{z^4}{7!}$  (v)  $\sum_{n=0}^{\infty} \frac{(-1)^n \cos 1}{(2n)!(z-1)^{2n}} - \sum_{n=0}^{\infty} \frac{(-1)^n \sin 1}{(2n+1)!(z-1)^{2n+1}}$  (vi)  $e^{\sum_{n=0}^{\infty}} \frac{1}{n!} \left(\frac{2}{z-2}\right)^n$ 

(vi) 
$$e \sum_{n=0}^{\infty} \frac{1}{n!} \left( \frac{2}{z-2} \right)^n$$

(vii) 
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left[ \frac{1}{(z-2)^{2n}} + \frac{1}{(z-2)^{2n+1}} \right]$$
 (viii)  $\sum_{n=0}^{\infty} \frac{1}{(2n-1)!z^{2n+1}}$ 

(viii) 
$$\sum_{n=0}^{\infty} \frac{1}{(2n-1)!z^{2n+1}}$$

(ix) 
$$\frac{(1-3i)}{10} \left[ \frac{1}{z-1} - \sum_{n=0}^{\infty} \frac{(-1)^n (z-1)^n}{(1+3i)^{n+1}} \right]$$

(x) 
$$(\sin l) \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{3}{z-3}\right)^{4n} - (\cos 1) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)!} \left(\frac{3}{z-3}\right)^{4n-2}$$

- 13. In the Laurent series expansion of the function  $f(z) = \frac{1}{(z-1)(z-2)}$  in the annular region 1 < |z| < 2, the ratio of the coefficient of  $z^n$  and  $\frac{1}{z^n}$  will be.
  - (a)  $\frac{1}{a}$

- (b)  $\frac{1}{2^n}$  (c)  $\frac{1}{2^{n+1}}$  (d)  $-\frac{1}{2^n}$

### PART-E (SINGULAR POINTS & CALCULATION OF RESIDUES)

Determine the singular point and corresponding residues of following complex functions:

(i) 
$$f(z) = \frac{1-2z}{z(z-1)(z-2)}$$

$$(ii)f(z) = \frac{z^2}{z^2 + a^2}$$

$$(iii) f(z) = \frac{ze^{iz}}{z^4 + a^4}$$

$$(iv)f(z) = \frac{z^2}{(z+1)^2 + (z-2)^2}$$

$$(v)f(z) = \frac{z}{\sin z}$$

(vi)
$$f(z) = \frac{z^2}{z^2(z^2+9)}$$
 at (0,-3)

$$(vii) f(z) = z^2 sin \frac{1}{z}$$

$$(viii)f(z) = \cot z$$

$$(ix)f(z) = \sec z$$

$$(x)f(z) = \coth(z)$$

$$(xi)f(z) = \frac{e^{iz} + \cos z}{(z-\pi)^4}$$

$$(xii)f(z) = e^{z-\frac{1}{2}}$$

$$(xiii) f(z) = \frac{\cos 2z}{(z+1)^2}$$

$$(xiv)f(z) = \frac{\exp(imz)}{z(z^2 + a^2)^2}$$

$$(xv)f(z) = \frac{1}{\ln^2 z}$$

[Answer: (i) z - 0,1,2, Residue = 
$$(\frac{1}{2}, 1, -\frac{3}{2})$$
, (ii) z =  $\pm ia$ , Residue

(ii) 
$$z = \pm ia$$
, Residue

$$= \left(\frac{1}{2}ia, -\frac{1}{2}ia\right), \quad \text{(iii)} \quad z = \pm a, \pm ia. \text{ Residue} =$$

$$\left(\frac{1}{4a^2}e^{ia}, \frac{1}{4a^2}e^{-ia}, -\frac{1}{4a^2}e^{-a}, -\frac{1}{4a^2}e^{a}\right),$$
  
(iv)  $z = -1, 2$ , Residue  $= \left(\frac{5}{9}, \frac{4}{9}\right),$ 

(v) 
$$z = n\pi$$
, Residue  $= \frac{n\pi}{(-1)^n}$ ,

$$(\mathbf{vi}) - \frac{e^{-3i}}{54}$$

(vii) 
$$z = 0$$
, Residue =  $-\frac{1}{6}$ 

(viii) 
$$z = n\pi$$
, Residue = 1,

$$(ix) z = (2n + 1) \frac{\pi}{2}, Residue = (-1)^{k+1},$$

(x) 
$$z = in\pi$$
, Residue = 1

(xi) 
$$z = n\pi$$
, Residue =  $\frac{i}{6}$ 

(xii) 
$$z = 0$$
, Residue =  $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n!)(n+1)!}$ 

(xiii) 
$$z = -1$$
, Residue = 2 (sin 2),

(xiv) 
$$z = 0, \pm ia$$
, Residue  $= \frac{1}{a^4}, -\frac{(2+ma)e^{-ma}}{4a^4}, -\frac{(2-ma)e^{ma}}{4a^4},$ 

$$(xv)$$
 z= 1, Residue =1]

- 2. If the function f(z) is a polynomial of order n, then at  $z = \infty$ , the function has a.
  - (a) Classical singularity
- (b)Removable singularity

(c)Simple Pole

- (d) Pole of order n
- If the function f(z) has a pole order n at z = a, the order of the pole of  $f^{(m)}(z)$  at this point will be.
  - (a)n m
- (b)m-n
- (c)m + n
- (d) 0 if m = n
- **4.** If the function f(z) has a pole order n at z = a, the order of the pole of f'(z) at this point will be.
  - (a)n-2
- (b)n -1
- (c)n
- (d) n + 1

- 5. If the function f(z) has a pole order n at z = a, the order of the pole of  $\frac{f''(z)}{f'(z)}$  at this point will be.
  - (a)n 2
- (b)n 1
- (c)n
- (d) 1
- **6.** At z = 0, the function  $f(z) = \tan\left(\frac{1}{z}\right)$  has.
  - (a)An isolated simple pole

- (b)An isolated pole of order 2
- (c)A non-isolated essential singularity
- (d) An isolated removable singularity
- The function  $f(z) = \frac{1}{1-e^2}$ , has a singularity at  $z = 2\pi i$  of the following nature:
  - (a)Pole of order 1
  - (b) Removable isolated singularity
  - (c) Isolated essential singularity
  - (d) Non-isolated essential singularity
- The function  $f(z) = (z-3) \sin \left(\frac{1}{z+2}\right)$  has singularity at z = -2 of the following nature:
  - (a)Pole of order 1

- (b)Removable isolated singularity
- (c) Isolated essential singularity (d) Non-isolated essential singularity
- 9. Discuss the nature of singularity regarding the following complex functions:

(i) 
$$f(z) = \frac{z}{(z^2+4)^2}$$

$$(ii) f(z) = sec\left(\frac{1}{2}\right)$$

(iii) 
$$f(z) = \frac{z^8 + z^4 + 2}{(z-1)^3 (3z+2)^2}$$

$$(iv)f(z) = \frac{1}{\sin \pi z^2}$$

$$(vi)f(z) = \frac{\cot z}{z}$$

$$(viii)f(z) = \frac{\sin z}{(z-\pi)^2}$$

(iii) 
$$f(z) = \frac{z^8 + z^4 + 2}{(z-1)^3 (3z+2)^2}$$
  
(v)  $f(z) = \sin\left(\frac{1}{1-z}\right)$   
(vii)  $f(z) = \frac{z}{1+z^4}$ 

$$(vij) f(z) = \frac{z}{\sin z}$$

$$(ix)f(z) = (z - \pi) \exp\left(\frac{1}{2}\right) \cot z$$

$$(x)f(z) = \frac{(z^{-n})^2}{[\sin \pi z]^3}$$

### Answer:

- (i)  $z = \pm 2i$  is a pole of order 2,
- (ii)  $z = \frac{2}{(2n+1)\pi}$  (n= 0,±1,±2....) are simple pole.
- (iii) z = 1 is a pole of order 3,  $z = -\frac{2}{3}$  is pole of order 2,
- (iv) z = 0 is a pole of order 2,  $z = \pm \sqrt{n} (n = \pm 1 \dots)$  are simple poles,
- (v) z=1 is an essential singular point,
- (vi) z = 0 is a pole of order 2,  $z = n\pi(n = \pm 1, ....)$  are simple pole, (vii)  $z = e^{i\frac{\pi}{4}}$ ,  $e^{i\frac{3\pi}{4}}$ ,  $e^{i\frac{5\pi}{4}}$ ,  $e^{i\frac{7\pi}{4}}$  are simple poles.

(viii)  $z = \pi$  is a simple pole,

(ix) z = 0 is essential singular point,  $z = \pi$  is removable singular point, others are simple poles (x)  $z = \pm 1$  are poles of order 2, z = 2 is removable singular point, others are simple poles].

**10.** At z = 0, the residue of the function  $f(z) = z^n \sin\left(\frac{1}{z}\right)$  [n is an integer] will be nonzero if.

(a)Z < 0

(b) n > 0 and odd

(c) $n \ge 0$  and even

(d) Only for n = 0

11. Which of the following statements is CORRECT for the function  $f(z) = \frac{1}{z(e^z-1)}$ ?

(a)z = 0 is a simple pole and the corresponding residue is  $\frac{1}{2}$ .

(b)z = 0 is a simple pole and the corresponding residue is  $-\frac{1}{2}$ .

(c)z = 0 is a double pole and the corresponding residue is  $\frac{1}{2}$ .

(d) z = 0 is a double pole and the corresponding residue is  $-\frac{1}{2}$ .

12. The function  $f(z) = (z - 3)^n \sin\left(\frac{1}{z-3}\right)$  has a residue of  $\frac{1}{120}$  at the point z = 3. The value of 'n' is.

(a)2

- (b)4
- (c)5
- (d) 6
- 13. Which of the following statement is CORRECT for the function  $f(z) = \frac{1}{z \sin z}$ ?

(a) z = 0 is a simple pole and the corresponding residue is  $\frac{1}{2}$ .

(b) z = 0 is a simple pole and the corresponding residue is 0.

(c) z = 0 is a double pole and the corresponding residue is  $\frac{1}{2}$ .

(d) z = 0 is a double pole and the corresponding residue is 0.

**14.** Find the residue of the following functions at  $z = \infty$ :

(i)  $f(z) = \frac{z^4 + z^2}{z^3}$  (ii)  $f(z) = \frac{z}{e^{-z^2} + 1}$  (iii) (i)  $f(z) = z^3 \cos(\frac{1}{z})$ 

[Answer: (i) -1

- (ii) 0,
- (iii)-1/241

### PART-F (APPLICATION OF CAUCHY RESIDUE THEOREM)

The contribution of the point  $z = \pi/2$  in evaluation of  $\oint_C \frac{\tan z}{z} dz$  (where C is a circle |z| = 2) is.

(a) 0

- (b)  $-4e^{i\pi/2}$  (c)  $4e^{i\pi/2}$  (d)  $-2/\pi$
- 2. Around which of the following curves the integral  $\oint_C \frac{z-1}{z^2+1} dz$  is vanishing?

(a) |z + i| = 1

(b) |z - i| = 1

## **Career Spectra**



(c) 
$$|z - 1| = 1$$

(d) 
$$2x^2 + (y+1)^2 = 1$$

3. Which of the following contour integral vanishes around circle C: |z| = 2?

(a) 
$$\oint_C \frac{\sin z}{z} dz$$

(b) 
$$\oint_C \frac{e^z}{z-1} dz$$

(c) 
$$\oint_C \frac{z^2}{z+i} dz$$

(d) 
$$\oint_C \frac{z^2 - 1}{z^3 - z^2 + 9z - 9} dz$$

The contour integral  $\oint_C z^2 (z-2)^{n-1} dz$  around |z|=3 vanishes if the integer n is such that.

(a) 
$$n < -2$$

(b) 
$$n > -2$$

(c) 
$$n = -2$$

- (b) n > -2 (c) n = -2 (d) none of these
- The value of the contour integral  $\oint_C \frac{z^3}{(z-2)^2} dz$  over |z| = 1, is
  - (a)  $24\pi i$
- (b)  $12\pi i$
- (c)  $6\pi i$
- The value of the integral  $\oint_C \frac{3z^3+z+1}{(z^2-1)(z+3)} dz$  around the curve C:|z|=2 (where, 'C' is traverse in the clockwise direction) is equal to.

(a) 
$$\frac{3\pi i}{4}$$

(b) 
$$-\frac{3\pi i}{4}$$
 (c)  $\frac{\pi i}{4}$ 

(c) 
$$\frac{\pi i}{4}$$

(d) 
$$-\frac{\pi i}{4}$$

The value of the integral  $\oint_C \frac{z \, dz}{(9-z^2)(z+i)}$ , where C is a circle |z|=2 in the argand plane, described in the positive sense is equal to.

(a) 
$$\pi/2$$

(b) 
$$\pi/4$$

(c) 
$$\pi/3$$

- (d)  $\pi/5$
- **8.** The value of the integral  $\oint_C \frac{1}{z^3 z^4} dz$ , where C is a circle |z| = 1/2 in the argand plane, described in the positive sense, is (b)  $-2\pi i$  (c)  $\pi i$  (d) 0
  - (a) 2πi

- The value of the integral  $\oint_C \frac{e^z}{\sin z} dz$ , where C is the positively traversed rectangle with corners at  $-\frac{\pi}{2} - i$ ,  $-\frac{\pi}{2} + 2i$ , and  $\frac{5\pi}{2} + 2i$ , will be.
  - (a)  $2\pi i (1 e^{\pi} e^{2\pi})$

(c)  $2\pi i (1 + e^{\pi} - e^{2\pi})$ 

- (b)  $2\pi i (1+e^{\pi}+e^{2\pi})$ (d)  $2\pi i (1-e^{\pi}+e^{2\pi})$
- 10. The value of the integral  $\oint_C \frac{z^2-1}{z^2-5iz-4} dz$  where C:|z-4i|=2 (oriented clockwise)
  - (a)  $\frac{4\pi}{3}$
- (b)  $-\frac{4\pi}{3}$  (c)  $-\frac{34\pi}{3}$  (d)  $\frac{34\pi}{3}$

- 11. The value of the integral  $\oint_C \frac{e^z 1}{z(z-1)(z-3i)^2} dz$  around the curve C : |z| = 2 (where 'C' is traversed in the clockwise direction) is equal to.
  - (a)  $\pi$  (e -1)
- (b)  $\pi$  (e -1)
- (c) πe
- 12. The value of the integral  $\oint_C (z+1) \cot\left(\frac{z}{2}\right) dz$ , where C is a circle |z|=1 in the complex argand plane given below described in the negative sense, is
  - (a)  $2\pi i$
- (b)  $-2\pi i$
- (c)  $4\pi i$
- (d)  $-4\pi i$

- **13.** Evaluate the following integrals:

  - (i)  $\oint_C \frac{\cos z}{z^{2n+1}} dz$ ; [C: |z| = 1] (ii)  $\oint_C \frac{\cos(\pi z^2) dz}{(z-1)(z-2)}$ ; C: |z| = 3
  - (iii)  $\oint_C \frac{\sin h (3z)}{\left(z \frac{\pi i}{t}\right)^3} dz$ ; C: square bounded by  $x = \pm 2$ ,  $y = \pm 2$
  - (iv)  $\oint_C \frac{4z^2 4z + 1}{(z 2)(z^2 + 4)} dz$ ; C: circle |z| = 1
  - (v)  $\oint_C \frac{1}{\sinh z} dz$ ; C: circle |z| = 4
  - (vi)  $\oint_C \frac{3z^2+z+1}{(z^2-1)(z+3)} dz$ ; [C: circle  $|z|=2(x \le 0)$ ]
  - (vii)  $\oint_C e^{-1/z} \sin\left(\frac{1}{z}\right) dz$ ; C: circle of |z| = 1
  - (viii)  $\oint_C \frac{\sin z}{z^4} dz$ ; C: circle |z| = 2 (ix)  $\oint_C \frac{1}{z^4 + 1} dz$ ; C: circle of |z 1| = 1
  - (x)  $\oint_C \frac{2+3\sin \pi z}{z(z-1)^2} dz$ ; C: square having vertices at 3+3i, 3-3i, -3+3i, -3-3i
  - (xi)  $\oint_C \frac{\sin z}{z^2(z^2-1)} \exp\left[\frac{1}{(z-1)^2}\right] dz$ ; C:  $|z+\frac{1}{2}|=1$
  - (xii))  $\oint_C \tan \pi z \, dz$ ; C: circle of |z| = 2,

- (i)  $\frac{2\pi i(-1)^n}{(2n)!}$ , (ii)  $4\pi i$  (iii)  $-\frac{9\pi}{\sqrt{2}}$ , (iv) 0,

- (v)  $-2\pi i$  (vi)  $-\frac{3}{2}\pi i$  (vii)  $2\pi i$  (viii)  $-\frac{\pi i}{3}$  (ix)  $-\frac{\pi i}{\sqrt{2}}$  (x)  $-6\pi^2 i$  (xi)  $\pi i \left[ e^{1/4} \sin 1 2e \right]$
- (xii) -8i ]

#### PART-G (IMPROPER INTEGRAL)

- 1. Evaluate the following integral:
  - (i)  $\int_0^{2\pi} \frac{\sin^2 \theta}{5 4\cos \theta} d\theta$

- (iii)  $\int_0^{2\pi} \frac{d\theta}{1 2m\cos\theta + m^2} (m^2 < 1)$ (v)  $\int_0^{2\pi} \frac{d\theta}{a^2 + \sin^2\theta} d\theta$
- (ii)  $\int_0^{2\pi} \frac{\cos^2 3\theta}{5 4\cos 2\theta} d\theta$ <br/>(iv)  $\int_0^{2\pi} \frac{\sin^2 \theta 2\cos \theta}{2 + \cos \theta} d\theta$

Answer:

### **Career Spectra**



$$(i)\frac{\pi}{4}$$

$$(i) \frac{\pi}{4}, \qquad \qquad (ii) \frac{3\pi}{4}$$

$$(iii) \frac{2\pi}{1-m^2} \qquad (iv) \frac{2\pi}{\sqrt{3}},$$

$$(iv) \frac{2\pi}{\sqrt{3}}$$

$$(v) \frac{\pi}{\sqrt{1+a^2}}$$

- The value of the integral  $\int_0^{2\pi} e^{\cos \theta} \cos(\sin \theta) d\theta$  will be 2.
  - (a) 0
- (b)  $2\pi$
- (c)  $\pi$
- (d)  $\frac{\pi}{2}$
- The value of the integral  $\int_0^{2\pi} e^{-\cos\theta} \cos(\sin\theta + n\theta) d\theta$  will be. **3.** 
  - (a)  $\frac{2\pi}{(n+1)!}$  (b)  $\frac{2\pi}{n!}$
- (c)  $\frac{\pi}{n!}(-1)^n$  (d)  $\frac{2\pi}{n!}(-1)^n$
- The value of the integral  $\int_0^{2\pi} \frac{\sin 3\theta}{5-3\cos \theta} d\theta$  will be 4.
  - (a) 0

- (b)  $\frac{\pi}{n!}$  (c)  $\frac{\pi}{6}$  (d)  $\frac{5\pi}{6}$
- 5. Evaluate the following integral:

  - (i)  $\int_{0}^{2\pi} \frac{1}{a+b\cos\theta} d\theta$  (a > |b|, a > 0) (ii)  $\int_{0}^{2\pi} \frac{1}{a+b\sin\theta} d\theta$  (a > |b|, a > 0) (iii)  $\int_{0}^{2\pi} \frac{1}{(a+b\cos\theta)^{2}} d\theta$  (a > |b|, a > 0) (iv)  $\int_{0}^{2\pi} \frac{1}{(a+b\cos\theta)^{2}} d\theta$  (a > |b|, a > 0)
  - $(v) \int_0^{2\pi} \frac{1}{\sqrt{2} \cos \theta} d\theta$
  - $(vi) \int_0^{2\pi} \frac{1}{(5+4\cos\theta)^2} d\theta$

- Answer: (i)  $\frac{2\pi}{\sqrt{a^2-b^2}}$  (ii)  $\frac{2\pi}{\sqrt{a^2-b^2}}$  (iii)  $\frac{2\pi a}{(a^2-b^2)^{3/2}}$

 $(iv) \frac{2\pi a}{(a^2-h^2)^{3/2}}$ 

- (vii)  $\frac{10\pi}{27}$ ]

- **6.** Evaluate the following integrals:

(ii)  $\int_{-\infty}^{\infty} \frac{\sin ax}{x^2 + b^2} dx (a, b > 0)$ 

- (i)  $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + b^2} dx (a, b > 0)$ (iii)  $\int_{-\infty}^{\infty} \frac{\cos ax}{(x^2 + b^2)^2} dx (a, b > 0)$ (iv)  $\int_{-\infty}^{\infty} \frac{\cos 2x}{(x^2 + b^2)(x^2 + b^2)} dx (a, b > 0)$
- (v)  $\int_{-\infty}^{\infty} \frac{\sin ax}{x(x^2+b^2)^2} dx (a, b > 0)$
- (vi)  $\int_{-\infty}^{\infty} \frac{\sin mx}{x} dx (m = +ve integer)$ (vii)  $\int_{-\infty}^{\infty} \frac{\sin mx}{(x^4 + a^4)^2} dx (a, m > 0)$

### Answer:

### **Career Spectra**



(i) 
$$\frac{\pi}{b}e^{-ab}$$
,

(ii) 0, (iii) 
$$\frac{\pi(ab+1)}{2h^3}e^{-ab}$$
,

(iv) 
$$\frac{\pi}{(a^2-b^2)} \left(\frac{e^{-2b}}{b} - \frac{e^{-2b}}{a}\right)$$
, (v)  $\frac{\pi}{b^2} (1 - e^{-ab})$ ,

$$(v)\frac{\pi}{h^2}(1-e^{-ab})$$

(vi) 
$$\pi$$
,

(vii) 
$$x \exp\left(-\frac{ma}{\sqrt{2}}\right) \cos\left(\frac{ma}{\sqrt{2}}\right)$$

7. Evaluate the following integrals:

(i) 
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)}$$
 (ii) 
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)^2}$$

(iii) 
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+a^2)^3}$$

(iv) 
$$\int_{-\infty}^{\infty} \frac{dx}{x^4 + a^4}$$
 (v)  $\int_{-\infty}^{\infty} \frac{dx}{(x^4 + a^4)^2}$ 

(vi) 
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+a^2)(x^2+b^2)} dx (a, b > 0)$$

(vii) 
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+a^2)(x^2+b^2)} dx(a,b)$$

[Answer: (i) 
$$\frac{\pi}{a}$$

$$\frac{\pi}{a}$$
, (ii)  $\frac{\pi}{2a^3}$ 

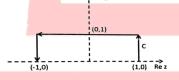
(iii) 
$$\frac{3\pi}{8a^5}$$
 (iv)  $\frac{3\pi}{\sqrt{}}$ 

$$(v) \frac{3\pi}{4\sqrt{2}a^3}$$

[Answer: (i) 
$$\frac{\pi}{a}$$
, (ii)  $\frac{\pi}{2a^3}$  (iii)  $\frac{3\pi}{8a^5}$  (iv)  $\frac{\pi}{\sqrt{2}a^3}$  (v)  $\frac{3\pi}{4\sqrt{2}a^3}$  (vi)  $\frac{\pi}{a+b}$ , (vii)  $\frac{\pi}{ab(a+b)}$ ]

#### **CSIR PREVIOUS YEAR QUESTIONS**

The value of the integral  $\int_C dz \, z^2 e^z$ , where C is an open contour in the complex zplane as shown in figure below: [CSIR JUNE-2011]



(a) 
$$\frac{5}{e} + e$$

(b) 
$$e - \frac{5}{}$$

$$(c)\frac{\frac{\epsilon}{5}}{e}-e$$

(b) 
$$e - \frac{5}{e}$$
  
(d)  $-\frac{5}{e} - e$ 

Which of the following is an analytic function of the complex variable z = x + iy in the domain |z| < 2? [CSIR JUNE-2011]

(a) 
$$(3 + x - iy)^7$$

(b) 
$$(1 + x + iy)^4 (7 - x - iy)^3$$

(c) 
$$(1 - 2x - iy)^4 (3 - x - iy)^3$$

(d) 
$$(x + iy - 1)^{1/2}$$

The first few terms in the Taylor series expansion of the function  $f(x) = \sin x$  around  $x = \frac{\pi}{4}$  are. [CSIR JUNE-2011]

(a) 
$$\frac{1}{\sqrt{2}} \left[ 1 + \left( x - \frac{\pi}{4} \right) + \frac{1}{2!} \left( x - \frac{\pi}{4} \right)^2 + \frac{1}{3!} \left( x - \frac{\pi}{4} \right)^3 + \cdots \right]$$

(b) 
$$\frac{1}{\sqrt{2}} \left[ 1 + \left( x - \frac{\pi}{4} \right) - \frac{1}{2!} \left( x - \frac{\pi}{4} \right)^2 - \frac{1}{3!} \left( x - \frac{\pi}{4} \right)^3 + \cdots \right]$$

(c) 
$$\left[ \left( x - \frac{\pi}{4} \right)^2 - \frac{1}{3!} \left( x - \frac{\pi}{4} \right)^3 + \cdots \right]$$

(d) 
$$\frac{1}{\sqrt{2}} \left[ 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots \right]$$

4. The first few terms in the Laurent series for  $\frac{1}{(z-1)(z-2)}$  in the region  $1 \le |z| \le 2$  and around z = 1 is. [CSIR JUNE-2012]

(a) 
$$\frac{1}{2} [1 + z + z^2 + \cdots] \left[ 1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \cdots \right]$$

(b) 
$$\frac{1}{1-z}$$
 -  $z$  -  $(1-z)^2$  +  $(1-z)^3$  + ...

(c) 
$$\frac{1}{z^2} \left[ 1 + \frac{1}{z} + \frac{1}{z^2} + \cdots \right] \left[ 1 + \frac{2}{z} + \frac{4}{z^2} + \cdots \right]$$
  
(d) 2 (z -1) +5 (z - 1)<sup>2</sup>+7 (z - 1)<sup>3</sup> + ...

(d) 
$$2(z-1)+5(z-1)^2+7(z-1)^3+\cdots$$

The value of the integral  $\int_{-\infty}^{\infty} \frac{1}{t^2 - R^2} \cos\left(\frac{\pi t}{2R}\right) dt$ .

[CSIR JUNE-2012]

(a) 
$$-\frac{2\pi}{R}$$
 (b)  $-\frac{\pi}{R}$  (c)  $\frac{\pi}{R}$  (d)  $\frac{2\pi}{R}$ 

(b) 
$$-\frac{\pi}{R}$$

(c) 
$$\frac{\pi}{R}$$

(d) 
$$\frac{2\pi}{R}$$

6. Let  $u(x, y) = x + \frac{1}{2}(x^2 - y^2)$  be the real part of an analytic function f(z) of the complex variable z = x + iy. The imaginary part of f(z) is. [CSIR JUNE-2012]

(a) 
$$y + xy$$

(d) 
$$y^2 - x^2$$

7. The Taylor series expansion of the function ln (cosh x), where x is real, about point x = 0 starts with the following terms: [CSIR DEC-2012]

(a) 
$$-\frac{1}{3}x^2 + \frac{1}{13}x^4 + \cdots$$

(b) 
$$\frac{1}{2}x^2 - \frac{1}{12}x^4 + \cdots$$

(a) 
$$-\frac{1}{2}x^2 + \frac{1}{12}x^4 + \cdots$$
 (b)  $\frac{1}{2}x^2 - \frac{1}{12}x^4 + \cdots$  (c)  $-\frac{1}{2}x^2 + \frac{1}{6}x^4 + \cdots$  (d)  $\frac{1}{2}x^2 + \frac{1}{6}x^4 + \cdots$ 

(d) 
$$\frac{1}{2}x^2 + \frac{1}{6}x^4 + \cdots$$

The value of the integral  $\oint_C \frac{z^3}{z^2-5z+6} dz$ , where C is closed contour defined by the equation. 2|z| - 5 = 0, traversed in the anti-clockwise direction is.

[CSIR DEC-2012]

(a) 
$$-16\pi i$$

(b) 
$$16 \pi i$$

(d) 
$$2\pi i$$

9. With z = x + iy, which of the following cannot be the real part of a complex analytic function of z = x+iy? [CSIR JUNE-2013]

(a) 
$$(x + iy - 8)^3 (4 + x^2 - y^2 + 2ixy)^7$$
 (b)  $(x + iy)^7 (1-x-iy)^3$  (c)  $(x^2 - y^2 + 2ixy - 3)^5$  (d)  $(1-x+iy)^4 (2+x+iy)^6$ 

(b) 
$$(x + iy)^7 (1-x-iy)^3$$

(c) 
$$(x^2 - y^2 + 2ixy - 3)^5$$

(d) 
$$(1-x+iy)^4 (2+x+iy)^6$$

10. Which of the following function cannot be the real part of a complex analytic function of z = x + iy? [CSIR DEC-2013] (b)  $x^2 - y^2$  (b)  $x^3 - 3xy^2$  (d)  $3x^2y - y - y^3$ 

(a) 
$$x^2y$$

(b) 
$$x^2 - y^2$$

(b) 
$$x^3 - 3xy^2$$

(d) 
$$3x^2y - y - y^3$$

11. Given that the integral  $\int_0^\infty \frac{dx}{y^2 + x^2} = \frac{\pi}{2y}$ , the value of  $\int_0^\infty \frac{dx}{(y^2 + x^2)^2}$  is.

[CSIR DEC-2013]



(a)  $\frac{\pi}{v^3}$ 

(b)  $\frac{\pi}{4v^3}$ 

(c)  $\frac{\pi}{8v^3}$  (d)  $\frac{\pi}{2v^3}$ 

12. If C is the contour defined by  $|z| = \frac{1}{2}$ , the value of the integral  $\oint_C \frac{dz}{\sin^2 z}$  is.

(a)  $\infty$ 

(b)  $2\pi i$ 

(c) 0

(d)  $\pi i$ 

13. The principal value of the integral  $\int_{-\infty}^{\infty} \frac{\sin(2x)}{x^3} dx$  is.

[CSIR DEC-2014]

(a)  $-2\pi$ 

14. The Laurent series expansion of the function  $f(z) = e^z + e^{1/z}$  about z = 0 is.

[CSIR DEC-2014]

(a)  $\sum_{n=-\infty}^{\infty} \frac{z^n}{n!}$  for all  $|z| < \infty$ 

(b)  $\sum_{n=0}^{\infty} \left( z^n + \frac{1}{z^n} \right) \frac{1}{n!}$  only if 0 < |x| < 1

(c)  $\sum_{n=0}^{\infty} \left(z^n + \frac{1}{z^n}\right) \frac{1}{n!}$  for all  $0 < |z| < \infty$ 

(d)  $\sum_{n=-\infty}^{\infty} \frac{z^n}{n!}$ , only if |z| < 1

15. Consider the function  $f(z) = \frac{1}{z} ln(1-z)$  of a complex variable  $z = re^{i\theta}$   $(r \ge 0, -\infty)$ 

 $\infty$ ). The singularities of f(z) are as follows:

[CSIR DEC-2014]

(a) Branches points at z = 1 and  $z = \infty$ ; and a pole at z = 0 only for  $0 \le \theta < 2\pi$ 

(b) Branches points at z = 1 and  $z = \infty$ ; and a pole at z = 0 for all  $\theta$  other than  $0 \le 1$  $\theta < 2\pi$ 

(c) Branches points at z = 1 and  $z = \infty$ ; and a pole at z = 0 for all  $\theta$ 

(d) Branches points at z = 0, z = 1 and  $z = \infty$ 

16. The value of the integral  $\int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$  is.

[CSIR JUNE-2015]

(a)  $\pi/\sqrt{2}$ 

(b)  $\pi/2$ 

(d)  $2\pi$ 

17. The function  $\frac{z}{\sin \pi z^2}$  of a complex variable z has.

[CSIR DEC-2015]

(a) A simple pole at 0 and poles of order 2 at  $z = \pm \sqrt{n}$  for n = 1,2,3...

(b) A simple pole at 0 and poles of order at  $z = \pm \sqrt{n}$  and  $z = \pm i\sqrt{n}$  for  $n = -\infty$ 1,2,3.....

(c) Poles of order 2 at  $z = \sqrt{n}$  for n = 0,1,2,3...

(d) Poles of order 2 at  $z = \pm n$  for n = 0,1,2,3...

18. The radius of convergence of the Taylor series expansion of the function  $\frac{1}{\cosh(x)}$ around x=0, is [CSIR JUNE-2016]

- (a) ∞
- (b)  $\pi$
- (c)  $\pi/2$

(d) 1

19. The value of the contour integral.

[CSIR JUNE-2016]

$$\frac{1}{2\pi i} \oint_C \frac{e^{4z} - 1}{\cosh(z) - 2\sinh(z)} dz$$

Around the unit circle C traversed in the anti-clockwise direction is.

- (a) 0
- (b) 2
- $(c) \frac{8}{\sqrt{3}}$

- (d)  $-tanh\left(\frac{1}{2}\right)$
- 20. Let  $u(x, y) = e^{ax} \cos(by)$  the real part of a function f(z) = u(x, y) + iv(x, y) of the complex variable z = x + iy, where a, b are real constant and  $a \ne 0$ . The function f(z) is complex analytic everywhere in the complex plane if and only if.

[CSIR JUNE-2017]

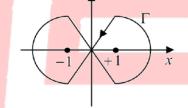
(a) b = 0

(b)  $b = \pm a$ 

(c)  $b = \pm 2\pi a$ 

- (d)  $b = a \pm 2\pi$
- 21. The integral  $\oint_{\Gamma} \frac{ze^{i\pi z/2}}{z^2-1} dz$  along the closed contour  $\Gamma$  shown in the figure is.





- (a) 0
- (b) 2π
- $(c) -2\pi$

- (d)  $4\pi i$
- 22. Consider the real function  $f(x) = 1/(x^2+4)$ . The Taylor expansion of f(x) about x = 0 converges. [CSIR DEC-2017]
  - (a) For all value of x
- (b) For all values of x except  $x = \pm 2$
- (c) In the region -2 < x < 2
- (d) For x > 2 and x < -2
- 23. What is the value of a for which  $f(x, y) = 2x + 3(x^2 y^2) + 2i(3xy + ay)$  is an analytic function of complex variable z = x + iy. [CSIR JUNE-2018]
  - (a) 1
- (b) 0
- (c) 3

- (d) 2
- 24. The value of the integral  $\oint_C \frac{dz}{z} \frac{\tanh 2z}{\sin \pi z}$ , where C is a circle of radius  $\frac{\pi}{2}$ . traversed counter-clockwise, with centre at z = 0, is [CSIR DEC-2018]
  - (a) 4
- (b) 4i
- (c) 2i

- (d) 0
- 25. The integral  $I = \oint_C e^z dz$  is evaluated form the point (-1,0) to (1,0) along the contour C, which is an arc of the parabola  $y = x^2$  -1, as shown in the figure. [CSIR DEC-2018]

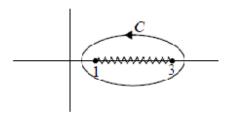
- (a) 0
- (b) 2 sinh 1
- (c)  $e^{2i} \sinh 1$
- (d)  $e + e^{-1}$

26. The contour C of the following integral.

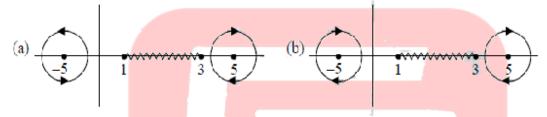
[CSIR DEC-2018]

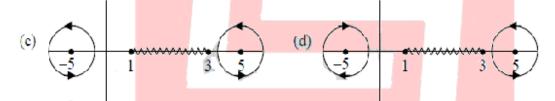
$$\oint_C dz \frac{\sqrt{(z-1)(z-3)}}{(z^2-25)^3}$$

In the complex z plane is shown in the figure below.



This integral is equivalent to an integral along the contours





27. The value of the definite integral  $\int_0^{\pi} \frac{d\theta}{5+4\cos\theta}$  is.

[CSIR JUNE-2019]

- (a)  $\frac{4\pi}{3}$
- (b)  $\frac{2\pi}{3}$
- (d)  $\frac{\pi}{3}$
- 28. Let C be the circle of radius  $\pi/4$ , centered at  $z = \frac{1}{4}$  in the complex z-plane that is traversed counter-clockwise. The value of the contour integral  $\oint_C \frac{z^2}{\sin^2 4z} dz$  is. [CSIR DEC-2019]
  - (a) 0

- $(b)\frac{i\pi^2}{4} \qquad \qquad (c)\frac{i\pi^2}{16}$
- 29. A function of a complex variable 'z' is defined by the integral  $f(z) = \oint_{\Gamma} \frac{\omega^2 2}{\omega z} d\omega$ . Where  $\Gamma$  is a circular contour of radius 3, centred at origin running counterclockwise in the w-plane. The value of the function at z = (2 - i) is.

[CSIR-NOV-2020]

- (a) 0
- (b) 1 4i
- (c)  $8\pi + 2\pi i$

(d)  $-\frac{2}{\pi} - \frac{i}{2\pi}$ 

GATE PREVIOUS YEAR QUESTIONS

- 30. The value of the integral  $\int_C z^{10} dz$ , where C is the unit circle with the origin as the centre is: [GATE-2001]
  - (a) 0

(b)  $z^{11} / 11$ 

(c)  $2 \pi iz^{11}/11$ 

- (d) 1/11
- 31. The value of the residue of  $\frac{\sin z}{z^6}$  is.

[GATE-2001]

- (a)  $-\frac{1}{5!}$
- (b)  $\frac{1}{51}$
- (c)  $\frac{2\pi i}{5!}$  (d)  $-\frac{2\pi i}{5!}$
- 32. If a function f(z) = u(x,y) + iv(x,y) of the complex variable z = x + iy, where x,y,u and v are real, is analytic in a domain D of z, then which of the following is true?

[GATE-2002]

(a)  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$ 

- (b)  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$  and  $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
- (c)  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$  and  $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y}$  (d)  $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 v}{\partial x \partial y}$
- 33. The value of the integral  $\int_C dz/c^2$ , where z is a complex variable and C is the unit circle with the origin as its centre, is: [GATE-2003]
  - (a) 0
- (b)  $2\pi i$
- (c)  $4\pi i$
- (d)  $-4\pi i$
- 34. The inverse of the complex number  $\frac{3+4i}{3-4i}$  is:

[GATE-2004]

(a)  $\frac{7}{25} + i\frac{24}{25}$ (c)  $\frac{7}{25} - i\frac{24}{25}$ 

(b)  $-\frac{7}{25} + i\frac{24}{25}$ (d)  $-\frac{7}{25} - i\frac{24}{25}$ 

- 35. The value of  $\oint_C \frac{dz}{(z^2+a^2)}$ , where C is a unit circle (anti clockwise) centered at the origin in the complex z-plane is: [GATE-2004]
  - (a)  $\pi$  for a = 2

(b) zero foe  $a = \frac{1}{2}$ 

(c)  $4\pi$  for a = 2

- (d)  $\frac{\pi}{2}$  for a =  $\frac{1}{2}$
- 36. The value of the integral  $\int_C \frac{dz}{z+3}$  where C is a circle (anticlockwise) with |z|=4, is: [GATE-2005]
  - (a) 0
- (b)  $\pi i$
- (c)  $2\pi i$
- (d)  $4\pi i$
- 37. All solutions of the equation  $e^z = -3$  are.

[GATE-2005]

- (a)  $in\pi \ln 3$ ,  $n = \pm 1, \pm 2...$  (b)  $\ln 3 + i(2n+1)\pi$ ,  $n=0,\pm 1, +2$
- (c)  $\ln 3 + i2n\pi$ ,  $n=0,\pm 1, +2...$
- (d)  $i3n\pi$ ,  $n = \pm 1$ , +2 ...
- 38. The value of  $\oint_C \frac{e^{zz}}{(z+1)^4} dz$ , where C is a circle defined by |z| = 3, is: [GATE-2006]

(a) 
$$\frac{8\pi i}{3}e^{-2}$$

(a) 
$$\frac{8\pi i}{3}e^{-2}$$
 (b)  $\frac{8\pi i}{3}e^{-1}$  (c)  $\frac{8\pi i}{3}e$  (d)  $\frac{8\pi i}{3}e^{2}$ 

(d) 
$$\frac{8\pi i}{3}e^2$$

39. The contour integral  $\oint \frac{dz}{z^2 + a^2}$  is to be evaluated on a circle of radius 2a centered at the origin. It will have contributions only from the points. [GATE-2006]

(a) 
$$\frac{1+i}{\sqrt{2}}a$$
 and  $-\frac{1+i}{\sqrt{2}}a$ 

(c) 
$$ia$$
,  $-ia$ ,  $\frac{1-i}{\sqrt{2}}a$  and  $-\frac{1-i}{\sqrt{2}}a$ 

(c) 
$$ia$$
,  $-ia$ ,  $\frac{1-i}{\sqrt{2}}a$  and  $-\frac{1-i}{\sqrt{2}}a$  (d)  $\frac{1+i}{\sqrt{2}}a$ ,  $-\frac{1+i}{\sqrt{2}}a$ ,  $\frac{1-i}{\sqrt{2}}a$  and  $-\frac{1-i}{\sqrt{2}}a$ 

40. If  $I = \oint_C ln \ z \ dz$ , where C is the unit circle taken anticlockwise and lnz is the principal branch of the logarithmic function, which of the following is correct?

(a) I = 0 by residue theorem.

(b) I is not defined since, lnz is branch cut.

(c) 
$$I \neq 0$$

(d) 
$$\oint_C \ln(z^2) dz = 2I$$

41. The value of  $\int_{-i}^{i} \pi(z+1)dz$  is.

[GATE-2008]

- (a) 0
- (b)  $2\pi i$
- (c)  $-2\pi i$
- (d)  $(-1+2i)\pi$
- 42. The value of the integral  $\int_C \frac{e^z}{z^2 3z + 2} dz$ , where the contour C is the circle  $|z| = \frac{3}{2}$  is.
  - (a)  $2\pi ie$
- (b)  $\pi ie$
- (c)  $-2\pi ie$
- (d)  $-\pi ie$
- 43. The value of the integral  $\oint_C \frac{e^z \sin z}{z^2} dz$ , where the contour C is the unit circle:

$$|z-2|=1, is$$

[GATE-2010]

- (a)  $2\pi i$
- (b)  $4\pi i$
- (c) πi
- (d) 0
- 44. For the complex function,  $f(z) = \frac{e^{\sqrt{z}} e^{-\sqrt{z}}}{\sin(\sqrt{z})}$ , which of the following statement is correct? [GATE-2010]

(a) z = 0 is a branch point.

(b) z = 0 is a pole of order one

(c) z = 0 is a removable singularity (d) z = 0 is an essential singularity

### Common data for Q.45 & Q.46-

Consider a function  $f(z) = \frac{z \sin z}{(z-\pi)^2}$  of a complex variable z.

- 45. Which of the following statements is TRUE for the function f(z)? [GATE-2011] (a) f(z) is analytic everywhere in the complex plane.
  - (b) f(z) has a zero at  $z = \pi$
  - (c) f(z) has a pole of order 2 at  $z = \pi$
  - (d) f(z) has a simple pole at  $z = \pi$ .

| 46. | •                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rcular contou                         | z  = 1 abou                         | t the origin. The integral          |
|-----|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|
|     |                                          | r this contour is: (b) zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) iπ                                | (d) 2iπ                             |                                     |
| 47. |                                          | he integral $\oint_C e^{1/z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dz, using the                         | contour C of c                      | Firele with radius $ z  =$          |
|     | 1, is.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                     | [GATE-2012]                         |
|     | (a) 0                                    | (b) 1-2πi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) 1+2πi                             | (d) 2πi                             |                                     |
| 48. | For the function                         | on $f(z) = \frac{16z}{(z+3)(z-1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{2}$ , the residue           | at the pole z =                     | <b>-1</b>                           |
|     | (Your answer                             | should be an integ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ver)                                  |                                     | [GATE-2013]                         |
|     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                     |                                     |
| 49. | The value of the                         | he integral $\oint_C \frac{z^2}{e^z+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dz, where C                           | is the circle $ z $                 | = 4, is<br>[GATE-2014]              |
|     | (a) 2πi                                  | (b) $2\pi^2 i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) $4 \pi^3 i$                       | (d) 4 a                             | τ <sup>2</sup> i                    |
| 50. |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | nalytic function                    | in a domain D. which                |
|     |                                          | owing options is National Street Indicate of the owner of the options of the owner owne |                                       |                                     | [GATE-2015]                         |
|     | (b) v(x,y) satis                         | <mark>sfies La</mark> place equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion in D                             |                                     |                                     |
|     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | the contour bet                     | ween $z_1$ and $z_2$ in D.          |
|     |                                          | Taylor expanded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                     |                                     |
| 51. | Consider a con                           | mplex function f(z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= \frac{1}{z(z+\frac{1}{2})\cos(z)}$ | $\frac{1}{z\pi}$ . Which one        | of the following                    |
|     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ECTKA                               | [GATE-2015]                         |
|     |                                          | nple poles at z = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                     |                                     |                                     |
|     |                                          | econd order pole a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                     |                                     |
|     | (c) $f(z)$ has inf<br>(d) $f(z)$ has all | inite number of se simple poles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cond order po                         | oles                                |                                     |
| 52. |                                          | following is an ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alytic function                       | n of z everywh                      | ere in the complex                  |
|     | plane? (a) z <sup>2</sup>                | (b) (b) $(z^*)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(c) z ^2$                            | $(d)\sqrt{z}$                       | [GATE-2016]                         |
| 52  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                     | g from $-\infty$ to $+\infty$ along |
| JJ. |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                     | al to(up to two                     |
|     | decimal places                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or ham plan                           | • • • • • • • • • • • • • • • • • • | [GATE-2017]                         |

- 54. The imaginary part of an analytic complex function is v(x,y) = 2xy + 3y. The real part of the function is zero at the origin. The value of the real part of the function at 1+i is.....(up to two decimal places). Ans = 3 [GATE-2017]
- 55. The absolute value of the integral.

$$\int \frac{5z^3 + 3z^2}{z^2 - 4}$$

Over the circle |z - 1.5| = 1 in complex plane, is ...... (up to two decimal places). Ans = 81.64[GATE-2018]

56. The pole of the function  $f(z) = \cot z$  at z = 0 is.

[GATE-2019]

(a) A removable pole

(b)An essential singularity

(c) A simple pole

- (d)A second order pole
- 57. The value of the integral  $\int_{-\infty}^{\infty} \frac{\cos(kx)}{x^2 + a^2} dx$ , where k > 0 and a > 0, is  $(a)\frac{\pi}{a}e^{-ka}$   $(b)\frac{2\pi}{a}e^{-ka}$   $(c)\frac{\pi}{2a}e^{-ka}$   $(d)\frac{3\pi}{2a}e^{-ka}$ [GATE-2019]

### TIFR- PREVIOUS YEAR QUESTIONS

58. If z = x+iy then the function  $fI(x,y) = (1+x+y)(1+x-y)+a(x^2-y^2)-1+2iy(1-x-ax)$ where a is a real parameter, is analytic in the complex z plane if a is equal to.

[TIFR 2013]

- (a) -1
- (b) +1
- (c) 0
- (d) i
- 59. The integral  $\int_0^\infty \frac{dx}{4+x^4}$  evaluates to. (a)  $\pi$  (b)  $\frac{\pi}{2}$  (c)  $\frac{\pi}{4}$

[TIFR 2014]

- (d)  $\frac{\pi}{9}$
- 60. The integral  $\int_0^{2\pi} \frac{d\theta}{1 2a\cos\theta + a^2}$  where 0 < a < 1, evaluates to.

  (a)  $\frac{2\pi}{1 a^2}$  (b)  $\frac{2\pi}{1 + a^2}$  (c)  $2\pi$  (d)  $\frac{4\pi}{1 + a^2}$

[TIFR 2015]

- 61. The value of the integral  $\oint_C \frac{\sin z}{z^6} dz$ , where C is the circle with centre z = 0 and radius 1 unit. [TIFR 2016]

- (d)  $\frac{i\pi}{6}$
- (a)  $i\pi$  (b)  $\frac{i\pi}{120}$  (c)  $\frac{i\pi}{60}$  62. The value of the integral  $\int_0^\infty \frac{dx}{x^4+4}$ , is.

  (a)  $\pi$  (b)  $\frac{\pi}{2}$  (c)  $-\frac{\pi}{2}$

[TIFR 2017]

- (d)  $\frac{\pi}{2}$
- 63. The value of the integral  $\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + a^2}$  is.

[TIFR 2018]

(a) 1/2a

(b)  $1/2\pi a$ 

(c)  $\pi a \exp(-a)$ 

(d)  $\exp(-a)/a$ 

64. Consider the complex function f(x,y) = u(x,y) + iv(x,y) where u(x,y) = u(x,y) + iv(x,y) $x^{2}(2+x) - y^{2}(2+3x), v(x,y) = y(\lambda x + 3x^{2} - y^{2})$  and  $\lambda$  is real. If it is known that f(x, y) is analytic in complex plane of z = x + iy, then it can be written.

[TIFR 2019]

(a) 
$$f = z^2 + z^3$$

(b) 
$$f = \bar{z}(2 + \bar{z}^2)$$

(c) 
$$f = 2z\bar{z} + z^2 - \bar{z}^2$$

(b) 
$$f = \bar{z}(2 + \bar{z}^2)$$
  
(d)  $f = z^2(2 + z)$ 

### JEST- PREVIOUS YEAR QUESTIONS

65. The value of integral  $\int_0^\infty \frac{\ln x}{(x^2+1)^2}$ , dx is.

[JEST-2012]

(b) 
$$-\frac{\pi}{4}$$
 (c)  $-\frac{\pi}{2}$ 

(c) 
$$-\frac{\pi}{2}$$

(d) 
$$\frac{\pi}{2}$$

66. Compute  $\lim_{z\to 0} \frac{Re(z^2) + Im(z^2)}{z^2}$ .

[JEST-2013]

- (a) The limit does not exist
- (b) 1

(c)-i

(d) -1

67. The value of integral.

[JEST-2014]

$$I = \oint_C \frac{\sin z}{2z - \pi} \, dz$$

With c a is circle |z| = 2, is

- (a) 0
- (b)  $2\pi i$
- (c) πi
- $(d) -\pi i$
- 68. The value of limit  $\lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1}$  is equal to.

[JEST-2014]

- (a) 1
- (c) -10/3
- (d) 5/3
- 69. Given an analytic function  $f(x,y) = \phi(x,y) + i\psi(x,y)$  where  $\phi(x,y) = x^3 + 4x y^2 + 2y$ . If C is a constant, then which of the following relation is true? [JEST-2015]
- (a)  $\psi(x,y) = x^2y + 4y + C$  (b)  $\psi(x,y) = 2xy 2x + C$  (c)  $\psi(x,y) = 2xy + 4y 2x + C$  (d)  $\psi(x,y) = x^2y 2x + C$
- 70. The value of the integral  $\int_0^\infty \frac{\ln x}{(x^2+1)} dx$  is.

[JEST-2016]

- (a)  $\frac{\pi^2}{4}$  (b)  $\frac{\pi^2}{2}$
- (d) 0
- 71. The sum of the infinite series  $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$  is

  (a)  $2\pi$  (b) $\pi$  (c) $\frac{\pi}{2}$

[JEST-2016]

72. The integral

$$\oint_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, \mathrm{d}x \, \mathrm{is}.$$

[JEST-2018]

| Career | Spectra |
|--------|---------|
|        |         |



(a)  $\frac{\pi}{e}$ 

(b)  $\pi e^{-2}$ 

(c)  $\pi$ 

(d)zero

- 73. Consider the function f(x, y) = |x| i|y|. In which domain of the complex plane is this function analytic? [JEST-2019]
  - (a) First and second quadrants
- (b) Second and third quadrants
- (c) Seconds and fourth quadrants
- (d) Nowhere

### **ANSWER-KEY**

### PART-A (MODULUS & ARGUMENT-CUBE ROOTS OF UNITY)

| 1. | A | 2. | D | 3. | D | 4. | В | 5. | В |
|----|---|----|---|----|---|----|---|----|---|
| 6. | D | 7. | В | 8. | D | 9. | C |    |   |

### PART-B (COMPLEX FUNCTION & CAUCHY-REAMANN EQUATIONS)

| 1. | * | 2. | * | 3. | A | 4. | A | 5. | В |
|----|---|----|---|----|---|----|---|----|---|
| 6. | В | 7. | A | 8. | В |    |   |    |   |

### PART-C (MILNE THOMSON METHOD & ANALYTIC FUNCTION)

| 1. | * | 2. | В   | 3. | A,B,C | 4. | A,B | ,C,D | 5. | D |
|----|---|----|-----|----|-------|----|-----|------|----|---|
| 6. | В | 7. | B,D |    |       |    |     |      |    |   |

### PART-D (POWER & TAYLOR SERIES EXPANSION)

| 1.  | * | 2.  | В | 3.  | C | 4. | * | 5.  | В |
|-----|---|-----|---|-----|---|----|---|-----|---|
| 6.  | C | 7.  | A | 8.  | В | 9. | C | 10. | A |
| 11. | В | 12. | * | 13. | C |    |   |     |   |

### PART-E (SINGULAR POINTS & CALCULATION OF RESIDUES)

| 1.  | * | 2.  | D | 3.  | C | 4.  | D | 5.  | D |
|-----|---|-----|---|-----|---|-----|---|-----|---|
| 6.  | C | 7.  | A | 8.  | C | 9.  | * | 10. | C |
| 11. | D | 12. | В | 13. | D | 14. | * |     |   |

#### PART-F (APPLICATION OF CAUCHY RESIDUE THEOREM)

| 1.  | В | 2.  | C | 3.  | A | 4. | A | 5.  | D |
|-----|---|-----|---|-----|---|----|---|-----|---|
| 6.  | C | 7.  | D | 8.  | A | 9. | D | 10. | D |
| 11. | * | 12. | D | 13. | * |    |   |     |   |

#### PART-G (IMPROPER INTEGRAL)

| 1. | * | 2. | В | <b>3.</b> | D | 4. | $\mathbf{A}$ | 5. | * |
|----|---|----|---|-----------|---|----|--------------|----|---|
|----|---|----|---|-----------|---|----|--------------|----|---|

### **PREVIOUS YEAR ANSWER-KEY**

| 1  | С | 13 | A | 25 | В | 37 | В | 49 | С     | 61 | С | 73 | С |
|----|---|----|---|----|---|----|---|----|-------|----|---|----|---|
| 2  | В | 14 | С | 26 | В | 38 | A | 50 | C     | 62 | D |    |   |
| 3  | В | 15 | В | 27 | D | 39 | В | 51 | В     | 63 | D |    |   |
| 4  | В | 16 | A | 28 | C | 40 | A | 52 | A     | 64 | D |    |   |
| 5  | В | 17 | В | 29 | C | 41 | В | 53 | Π     | 65 | В |    |   |
| 6  | Α | 18 | C | 30 | A | 42 | C | 54 | 3     | 66 | C |    |   |
| 7  | В | 19 | C | 31 | В | 43 | A | 55 | 81.70 | 67 | C |    |   |
| 8  | A | 20 | D | 32 | В | 44 | C | 56 | *     | 68 | D |    |   |
| 9  | D | 21 | C | 33 | A | 45 | D | 57 | A     | 69 | C |    |   |
| 10 | Α | 22 | C | 34 | D | 46 | В | 58 | A     | 70 | D |    |   |
| 11 | В | 23 | A | 35 | В | 47 | D | 59 | D     | 71 | * |    |   |
| 12 | С | 24 | * | 36 | С | 48 | 3 | 60 | A     | 72 | A |    |   |

